
594 Ti A N D  Zr B.C.C.  S O L I D  S O L U T I O N S  C O N T A I N I N G  T H E  oJ P H A S E .  I 

Equation (55) for G in closed form behaves as described 
in the text. It reduces to unity for r/=0, and with in- 
creasingly large r/it generates sharp maxima at integral 
h t and h2. 
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The Short-Range Structure of Ti and Zr B.C.C. Solid Solutions Containing the to Phase. II.  
Solution of the Structure Determination* 
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Our new techniques for computing intensity distributions from atomic arrangements with defects in 
periodicity were applied to a variety of models in an attempt to reproduce in detail the diffuse neutron- 
diffraction pattern of a Zr-20 wt. % Nb alloy quenched from 1273~K. The model which succeeds is 
described, and its kinematic intensity sum is derived. The resultant computed diffuse intensity distribu- 
tion is compared with experiment. 

Introduction 

In a companion paper (Borie, Sass & Andreassen, 
1973, referred to here as Part I), the calculation of 
diffuse intensity distributions in reciprocal space re- 
sulting from the formation of the co phase in b.c.c. 
solid solutions was described. The theory correctly 
separates the diffraction pattern into two parts: sharp 
fundamental Bragg maxima (those common both to 
b.c.c, and co); and superstructure reflections, the details 
of which depend on the model used to specify the atomic 
positions. For a simple model, broadened superstruc- 
ture maxima, forming planes of diffuse intensity whose 
normal is c* (the hexagonal basis vector of the reci- 
procal unit cell of the o~ phase) were found. Though 
this result is qualitatively compatible with experiment, 
the model failed to reproduce the details of the ob- 
served intensity distribution. Specifically, superstruc- 
ture peak shifts parallel to c* were found which are 
opposite in direction to those observed. Though rela- 
tive intensities of the superstructure maxima derived 
from the model agreed qualitatively with experiment, 
a quantitative fit was not attempted. 
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The model tested in Part I was that of a crystal com- 
posed of regions of either untransformed b.c.c. (the fl 
phase), or wholly transformed co, containing no frag- 
ments of co cells. Diffuse effects and peak shifts were 
taken to result from anomalous interference effects 
among the subvariants of the system, as illustrated in 
Fig. 1, Part I. 

The result of our calculation displayed in Figs. 3 and 
4 of Part I is valid only for the special composition 
¼fl, 3~0 (by volume), and for a random distribution of 
integral co cells and fl translational entities in columns 
parallel to c*. Its generalization to arbitrary composi- 
tion and states of order failed to reverse the peak shifts. 

We conclude from this that the crystal probably con- 
tains local atomic configurations not found in either co 
or fl regions. If that be the case, the diffraction pattern 
provides few clues as to what such a configuration may 
be. At this point in our understanding of the solution 
of short-range structure problems, we are reduced to 
testing physically plausible models. 

We describe here the last in a series of models, which 
reproduces quantitatively the observed diffraction pat- 
tern. The diffuse intensity distribution to be fit by 
theory was taken to be that of Keating, Axe & Moss 
(1973) shown in Fig. 1. Since it was measured with 
neutrons, it is relatively free of the double diffraction 
and dynamical effects which plague electron-diffraction 
patterns, and it is free of form factor effects which 
cause X-ray measurements to be of uneven statistical 
quality. 

The contour map of Fig. 1 is the intensity distribu- 
tion in the plane k = 0 at 300 °K for a Zr-20 wt. % Nb 
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alloy quenched from 1273 °K. The diffuse intensity was 
found to be elastic, indicating that the deviations from 
periodicity in the alloy are of static rather than elastic 
origin. The hexagonal coordinate system shown is 
relevant to one of the four variants of the system, with 
integer values of the continuous variables h1H3 corre- 
sponding to the Miller indices. The diagonal tails 
appended to the right of the 002, 103 and 201 diffuse 
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Fig.  1. C o n t o u r  m a p  o f  the  di f fuse  n e u t r o n  in t ens i ty  d i s t r i bu -  
t ion  in the  hlOHs p l a n e  o f  r e c i p r o c a l  s p a c e  at  3 0 0 ° K  fo r  
Z r - 2 0  wt.  % N b  q u e n c h e d  f r o m  1273°K.  
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Fig. 2. Schematic illustration of the three subvariants of the 
system with defective translational entities at the subvariant 
boundaries. 

maxima are associated with the second variant whose 
c* axis also lies in the plane of measurement and are 
omitted from consideration in what follows. As in 
Part I, we assume that the variants of system scatter 
independently. 

Description of  the model 

For simplicity we take the crystal to be completely 
transformed, containing no b.c.c, regions. We adopt 
the convention established in Fig. 1, Part I: After 
having labeled the hexagonal planes A, B, or C ac- 
cording to the stacking sequence, we identify an (,) 
region as subvariant one if the plane undisplaced on 
transformation is an A plane. It is subvariant two if the 
undisplaced plane is B, and three if it is C. Fig. 2 illus- 
trates the way in which we presume space to be filled 
with the three subvariants. An important detail of the 
model is the assumed nature of the boundary regions 
in vertical columns of cells parallel to c. Transitions 
between subvariants in such columns are to be allowed 
only via the two defective translational entities shown 
in the Figure. Note that the atomic environment in 
such a defect is different from that of either the (I) or the 
fl phase. Because the defective region has a dimension 
parallel to c of 2c/3, it follows that in vertical columns 
of cells, the model requires that e)t be followed by o)3 
and never by (')2. In a vertical column, we require that 
a defective translational entity be both preceded and 
followed by an integral o) cell. We take the crystal to be 
a three-dimensional mosaic constructed of integral oj 
cells and the defective entities shown. 

Let v~ and vz specify the two defective configurations, 
and let 7 be the probability that in a vertical column an e) 
cell is followed by either of them. Then the probability 
of finding the configuration (ov¢o (or ~oc2co) is 7/2. The 
average number of o) cells between faults in a column 
is 1/7. Hence for 1/7 cells ofo), there are ½rl configura- 
tions and -Iv2. Because an ~o cell has a volume which is 

that of a defective translational entity, the volume 
fraction of the crystal that is v~ (or v2) is 

3 )} =T/ (27+3) .  (1) x = ½ { l / ( l +  2y 

The volume fraction of the crystal composed of inte- 
gral cells associated with, say, subvariant one is 

y =  ½(1 - 2 x ) =  1/(27 + 3 ) .  (2) 

Diffraction theory 

We choose an atom in the crystal at random and exam- 
ine its environment. If transformation has left it undis- 
placed, it may be preceded by an o) cell or by either of 
the defective configurations. This is illustrated schemati- 
cally by the first three elements shown in Fig. 3. If 
it is displaced downward it may either be in an e)z region 
or in one of the defective configurations as represented by 
the next two elements of the Figure. Its environment for 
an upward displacement is shown in the final two ele- 
ments of the Figure. 
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Having specified the environment of the origin, we 
proceed to translate a distance n~al +nzaz. As in Part  I, 
we choose to characterize the result of  that translation 
in terms of p, the number of boundaries crossed in the 
course of the translation. 

We may use the probabilities Pp and P~ as defined 
and derived in Appendix A, Part  I, for T 'different' 
regions in the hexagonal plane. The condition that the 
regions be different used in the derivation is not for- 
mally necessary and was used for the sake of clarity. We 
may set S of  them to be identical and to correspond to, 
say, oJl regions. Then S is determined by the require- 
ment that S/T=y as given by equation (2). We obtain 

S/T=1(27+3). (3) 

Equation (3) may be interpreted as the probabili ty that 
as we sample various parts of a hexagonal plane we 
find the plane corresponding to an ~ol (or ~o2 or eJ3) 
region, in the sense of Fig. 3. The number  of regions 
in the plane associated with defective configurations is 
T - 3 S .  Hence, as we sample the plane, the probabili ty 
that it corresponds to one of the four defective regions 
represented by elements two, three, five, and seven of 
Fig. 3 is ~ ( I - 3 S / T ) = ~ x ;  or with equation (I), 

:~(1 - 3S/T)= 7/(47 + 6).  (4) 

Using the notation of Part  I, we wish to compute 
(exp [2rci(h',--h'0)h3]) for our model and to substitute 
the result into equation (7), Part  I, to obtain the inten- 
sity distribution in reciprocal space. To that end, we 
define probabilities 0a,, +00,, and _a,  having to do with 
the arrangement  of translational entities in a vertical 
column parallel to c. 000, is the probabili ty that, begin- 
ning with an undisplaced atom preceded by an integral 
o,~ cell, we traverse n hexagonal planes and find that 
a tom undisplaced. +a,  is the probabil i ty that  the nth 
such atom is displaced upward and _00, the probabili ty 
that  it is displaced downward.  

We may now write the contr ibution to (exp [2rci(h-,.- 
x0)h3]) for those nxnzn3 atomic pairs which begin with 
the origin in an ~ol region: 

S pv{oa. 3 + exp  [27rih3] (exp [2rci(x,,- B.0)h3]) l  : T + a'3 

S P'p(S- 1){oa. 3 + _a,, 3 exp [-2rcih3]}+ T 

+ + a.  3 exp [2~zih3] + - 00,,s exp [-2~ih3]} 
S 

+ TPpS{oa.a-, + +00.3_texp[2~ihj] 

+ -00,,3-1 exp [-2~zih3]}+ S T P~ S{°O 'n3  - 2 

+ + 00,,3-2 exp [2~ziha] + _ o',,.~_ 2 exp [-2:¢ih3]} 

S + TP~½(T-3S){oa,3_3+ +o',,3_ 3 exp [2~ih3] 

S 
+_o ,3_a  exp [ -2n ih3]}+  2fiP~'½(T-3S){°a"3-4 

+ +a,,3_aeXp [2~iha] + _a,,3_4 exp [ -2~iha]} .  (5) 

In equation (5), SIT is the probabil i ty that  the origin 
is in an COl region. (S/T)Pp is the probabili ty that we 
begin in such a region, traverse p boundaries in the 
hexagonal plane, and find ourselves in an identical 
region. The coefficient of (S/T)P~, is the result of a verti- 
cal translation n3 in terms of the a,3's, beginning with 
an undisplaced atom at n3 =0.  

(S/T)Pg is the probabili ty that after the translation, we 
find ourselves in a region 'different' from the origin. 
But since we have taken S of the T 'different' regions 
to provide identical environments,  the coefficient of 
(S/T)P~,(S- 1) must be the same as that of (SIT)P,,. 

If  we begin the translation n3 in o)2, the a tom at 
n3 = l must be undisplaced, as shown in Fig. 3. Hence 
the subscripts on the 00,3's in the coefficient of  the first 
(S/T)PgS are reduced by one. Those on the a,,3's in the 
coefficient of the second (S/T)PgS in equation (5) are 
reduced by two, corresponding to beginning n3 in co3. 

The probabili ty that the hexagonal translation ter- 
minates in the defective configurations shown by the 
second and third elements of Fig. 3 is (S/T)Pg½(T- 3S). 
Here, though the plane at n3 = 0 is undisplaced, we have 
required that  these configurations always be followed 
by at least one integral o) cell. Hence the atom at n3 = 3 
must be undisplaced, and the subscripts on the a,.3's 
must be reduced by three for the n3 translation. Simi- 
larly, for hexagonal translations terminating in regions 
represented by the fifth and seventh elements of Fig. 3, 
the subscripts must be reduced by four. 

With expressions (41) and (42), Appendix A, Part  I, 
substitute for P ,  and P~ in equation (5). After some 
rearrangement there results 

(exp [2rci(~,-xo)h3])l= r T ([°°"3+°a"3-1 

+ 0o°,3- 2] + [ + 00,3 + + °,3-1 + + 0",3- 2] exp [2ztih3] 

+[_00,3+ _a,3_ l + _ao3_z] exp [ -  2rcih3]) 

+ ½(1 - 3S/T) ( [000n3_ 3 -It- 0 0 " n 3 _ , ]  

+[+o',,3_3+ +~r,3_4] exp [2gih3] 

+[_00n3_3+_tT,,3_4]exp[-Rrcih3])}[1-(-Tl, l)P ] 

S ~- (oa,~ + + o', 3 exp [2~zih3] 
+ T  - 

+ _o-,3 exp [ -2nih3]) .  (6) 

Consider the quanti ty in equation (6) in curly 
brackets, called 5 , 3 .  Upon elimination of S/T with 
equation (3) it becomes 

1 
'"~7n3 -~- 27 + 3 {[O0"n3 "+ O0"n3 -- 1 + O0"n3 -- 2 

+ ~:(O0"n3 - 3 + O0"n3 - 4)]  + [ + O'n 3 "-[- + O'n 3 - I + + O'n 3 - 2 

+ ~'(+ a.3-3 + +a~ 3-4)] exp [27zih3] + [_a.  3 + _on 3_~ 

-'~ _ 00n3_ 2 -~- ~ ' ( _  O'n3_ 3 -'1- _ O'n3_ 4) ] exp [-- 2rcih3]}. (7) 
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F o r  ~r.'s al l  o f  t h e  s a m e  p re f ix ,  t h e r e  ex i s t s  a r e l a t i o n .  
Beginning with the origin, with probabili ty 1-?/ ,  we 
may have an integral ~ cell, or, with probabili ty ),, we 
may have a defective configuration followed by an co 
cell. Hence for any n 

O ' n = (  l - -  ? / )0 .n  - 3 + ) ' O ' n -  5 • ( 8 )  

Elimination of o0.,3, +0",,3, and _0-, 3 from equation (7) 
with (8) yields 

1 
'~7"3 = 27 + 3 {[00.,3 - 1 + 00.,3 - 2  "{ -  0 0 . . 3 - - 3  

+ ? / (0% - ~ + 0 %  - ~)] + [ + % - ~ + + % - 2 + + % -  3 

+ ?/(+o,3-4 + +0",3-5)] exp [27rih3] + [_o',,3_ l +-0.3n-2 

-f- - 0 . " 3  - 3  -q- ~ ( -  0 " n 3 - 4  q"  -O'n3-5)] exp [-- 2zrih3]} 

~- (9) ~ --~¢" n3 _ 1 . 

Since equation (9) must hold for any n3, ~ is invariant 
and independent of  n3. To find °~- we may enumerate 
the 0.,,'s for n _< 4 and substitute the result into equation 
(7)" 

00.0 = 1 ; oai = 0 ; oa2 = ?/; 00"3 = 1 - y; oa4 = 0 ,  (1 O) 

+ a 0 = 0 ;  +0.1= 1-½7/; +a2=0 ;  +0"3=7; 
+0"4=( l - ) , )  ( I -½7/) ,  (11) 

_~r0=0; _a~ =½-7; -0.2 = 1 --?/; _~ra=0; 
_ 0.4 =½),(3--),). (12) 

We obtain 

1 
"5~ = 2?/+-3 {( 1 + )0 + ( 1 + 7/2) exp [2?rih3] 

+ ( l + ? / / 2 ) e x p [ - 2 r c i h 3 ] } .  (13) 

We may also obtain . ~  by considering the limiting 
values approached by the a , ' s  for large n. In that  case 
the environment of the origin is not relevant, and the 
limit approached by 00", is simply the probabil i ty that  
an atom in a hexagonal plane is undisplaced. This 
limit is simply the sum of the probabilities associated 
with elements one, two, and three of Fig. 3. With the 
aid of  equations (3) and (4) we find 

lim 00",= 1/(27/+ 3 )+  2[?//(47/+6)]=(1 + ),)/(2), + 3) ,  
. - - ~ o o  

(14) 

~-ZEM£NF /VI4MSEI~ 
I £ 3 4 5 6 7 

= / I / ~ A # . , "  o F  rH~" 

n s = o ~ l  1 Oma, Aro, 

Fig. 3. Schematic illustration of the various possible atomic 
environments in a hexagonal plane. 

while 

lim +o-,= lim _o-,= 1/(2y+ 3)+ ),/(47+6) 
. - +  C<: n - - - ~ o o  

=(1 + 7/2)/(2),+ 3).  (15) 

Substitution of  the limiting values of  the 0.,'s into 
equation (7) or (9) gives equation (13) . .7  has a meaning 
parallel to that  of  the analogous quanti ty developed in 
Part I: it is the average structure factor per atom. 

With SIT eliminated from the remaining parts of 
equation (6) with (3) we obtain 

1 P 
(exp [27ri0c,- h'0)h3])~ = 2), + 3  

+ +0.,3 exp [2rciha] + -0.,3 exp [ -2 r r iha ] -o~)} .  (16) 

Expressions similar to (16) may be developed for the 
contr ibut ion to the relevant average for those atomic 
pairs whose origins are found in o)2 and o03 regions. 
Subscripts on the contributions refer to the relevant 
elements of  Fig. 3. 

(exp [2rff(tG- tco)h3])a 

_ exp [2rcih3] {o~ + (_ T l )1, 
- 2 7 + 3  - i  (0o',3-t 

+ 0",3 - 1 exp [2~zih3] + _ 0-, 3_ 1 exp [ -  2rcih3] - ,~-)} + 

(17) 
(exp [2rci(x,- xo)h3])6 
_ exp [ - 2;rrih3] f ~ P 
- ~2~ q-3 ~[~" + ( - T 1 - 1 ) ( 0 0 . n 3  - 2 

+ O', 3- 2 exp [2rcih3] + _ o', 3 _ 2 exp [ -  2rcih3] - , -~)} .  + 

(18)  

For the four defective configurations of  Fig. 3 we find 

(exp [2rci(tc,- h-0)h3])2 Jr- (exp [2rei(h-,- h~o)h3])3 

- Y (o0.,3-3 + 0.,,3 exp [2rcih3] 2) ,+3 { , ~ +  ( - T  1 )~' - -  - -  l + - 3 

_O'n3_ 3 exp [-27rih3]- ,~-)} ; (19) + 

(exp [2g i (x , -  x0)h31)5 

_ ), exp [2zeih3] ,[o~ + T 1 P 

+ +o',,3_4 exp [2nih3] + -0.,3-4 exp [-2nih3] - ~ ) t  
, i  

(20) 
(exp [2rci(x,-/¢0)h3])7 

7 exp [ -- 2rcih3] ,1" 5 i, - 4 
= 4)~q-6 - [  + ( - - T I - ]  -) (0o"'3 

1 + + 0.n 3 - 4 exp [2zcih3] + _ 0',i 3 _ 4 exp [ -- 2zrih3] - ,~)  [,. 
aw 

(21) 
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Equations (16) through (21) may be combined to 
give 

(exp [2rci(K,,--h-o)h3])=.YY2+ (-- T 1 1)vq/,,3 , _  (22) 

where 
1 

~'"= 2~;+3 {[oa,,+ _~r,,_, + +O'n_ 2-Jr- ~'00"n_3-Jr-~'+O'n_4 

--~½Y_Gn_4]--~[+~n-~-O(Tn_,-~- ~ +  0"n_ 3 -Jl- l~)00"n _ 4] 

X exp [2rcih3] + [_ o-. + oO',,_ 2 ']-  Y -  ° 'n  - 3 -Jr- ½y00"n _ 4] 

x exp [ -  27rih3] + [+o'._ ~ +½Y+G-4] exp [2zti2h3] 

+ [ _ a . _ z + ~ } ' _ a . _ 4 ] e x p [ - 2 r c i 2 h a ] } - . ~  2 . (23) 

1 
///2 = ~ y % _ ~  { 2 y  -Jr- 2 exp [ -  27l: ih3]  

+ exp [2rti2h3]} - .~-z, 

1 
~/3 = 27 q53 {3 - y + 2y exp [2/~ih3] 

+ y exp [ - 2rci2h3] } -.~-z 

(28) 

(29) 

where ~ is as given by equation (13). The simple form 
of 9'0, which was also found for the model used in Part 
I, is a general result. 

Note that substitution of the limits given by equations 
(14) and (15) and ~ from equation (13) into (23) gives 

lim 9,,= 0 .  (24) 
tl ---. c<~ 

Substitution of equation (22) into equation (7), Part 
1, leads as before to equation (20), Part I, except that 

. ,+.2 ( 1 )v. 
the sum over p becomes ~ S~, 1 +"2 _ 

~=o T - 1  

The meaning of .~,i+,2 is unchanged. We have general- ~ p  

ized the result of Part I for the special case of T =  4 to 
arbitrary T. The meaning of c¢ is as before, and the 
development leading to equations (21) through (25), 
Part I, follows, except that the definition oft / is  general- 
ized : 

rl= l - o t T / ( T -  l) . (25) 

Appendix C, Part I, concerned with the evaluation of 
G(hlh2), holds without change. The structural meaning 
of e and T, given that we have taken certain of the T 
regions to be identical, is discussed in the Appendix. 

The summation giving the function Q(hah2h3) may 
be found from equation (24), Part I (or, if the atomic 
displacements are taken to be c/9 rather than c/6, 
equation (37), Part I), taking 9,,, to be given by equation 
(23). The values of the a, 's  relevant to the computation 
of any q/, may be obtained using equation (8) as a re- 
cursion formula and the first four values of 0G, +o'., 
and _a.  as given by equations (10), (11) and (12). Rela- 
tions, of course, exist among the three kinds of G ' s -  
for example, 0G + + o'. + _ a.  = 1 - so that equation (23) 
could be simplified. However, it is readily handled by a 
computer as given. 

Because the smallest subscript on rr. in equation (23) 
is n - 4 ,  the ~,,'s for n < 4 must be treated as special 
cases, as in Part I. We find 

V0 = 1 - ~ 2 ;  (26) 

1 
~rl = 2~, + 3 {(2 + ~,) exp [2rtih3] + }, exp [ -  27tih3] 

+exp [ -  2rci2h3]}- ~ z ,  (27) 

H3 

a.o 

o.o ~ 
0.0 L~O 

f ' - - / J  

3.0 

Fig. 4. The function Q(h,OH3) for Model I. 
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Results and discussion 

Fig. 4 shows the function Q(htOH3) computed as de- 
scribed above. The atomic shifts were taken to be c/9, 
so the map was obtained with equation (37), Part I. 
The summation of that equation was terminated at 
In31 = 50. The variable H3 = 9h3 as in Fig. 4, Part I. As 
before the point (h~, H3)= (3, ~) is an inversion center, 
and the repeat intervals for the periodic function Q are 
h i=3 ,  / /3=9.  

In contrast with the result of Part I, we have suc- 
ceeded in reversing the directions of all of the peak shifts 
of the diffuse superstructure reflections, which now 
agree with those observed experimentally, as shown in 

H3 

~ f  

/ .  

0.0 

L 

0.0 /.0 ,f.0 3.0 

Fig. 5. The function Q(h~OH3) for Model II. 

Fig. 1. Our calculation has also resulted in fair agree- 
ment between observed and calculated relative intensi- 
ties of the superstructure maxima, and it gives intensity 
distributions which are more extended laterally, as ob- 
served. Note that the diffuse maxima of Figs. 3 and 4, 
Part I, are much more nearly equiaxed than those of 
Figs. 1 and 4. 

A value of y=0.24 was used for the calculation, 
which means that the average distance between faulted 
configurations in a vertical column is about 4c. That 
value was chosen by monitoring the position of the 002 
diffuse maximum as ~, was varied, and taking that value 
which reproduced the shift measured by Keating, Axe 
& Moss (1973). 

An inevitable ambiguity in structure problems is the 
question of uniqueness. In an effort to make some 
comment on that, we repeated our calculation for a 
slight variation of Model I, described above. Model II 
was taken to be identical to I, except that a single defec- 
tive translational entity of height 2c/3, with the central 
plane unshifted, was used. As before, this requires that 
in a vertical column o~ is always followed by m3. How- 
ever the transition is accomplished by the insertion of 
an interval of height 2c/3 of essentially untransformed 
/3. Modification of the diffraction theory to accomodate 
this change is straightforward and will not be described. 

Fig. 5 shows the resultant Q(hiOH3) for Model II. 
The directions of the peak shifts are unaffected by the 
change, and remain correct. However, note that the 
strong diffuse maxima have become quite asymmetric, 
exhibiting pronounced high-angle tails, contrary to ob- 
servation. Model II also causes poorer agreement with 
the observed relative intensities. 

Table 1 is a quantitative comparison of relative peak 
intensities of the diffuse maxima generated by Models 
I and II with the measurements of Keating, Axe & 
Moss. Those hkl's marked F are fundamentals and are 
not part of the diffuse-intensity distribution. The ex- 
perimental values were read from Fig. 1 and normalized 
to unity for the strong 103 reflection. The entries in the 
Table for the two models were taken from Figs. 4 and 
5 and similarly normalized. To complete the compari- 
son, the square of the structure factor of the ~o phase, 

Table 1. Comparison of diffuse peak intensities 

hkl 
T01 
T02 
T03 
T04 
001 
002 
003 
004 
101 
102 
103 
104 

and the structure factor with experiment for 
Models I and II (u = ~) 

Experiment 

0.12 
F 
0.12 
1.05 
0.00 
0.62 
F 
0.00 
F 
0.00 
1.00 
F 

Model 

0.16 

0.00 
0.78 
0.08 
0.66 

0.30 

0.06 
1-00 

Model I[ 2 2 F/F103 
0.20 0.20 

0.00 0.00 
0.69 0.58 
0.12 0.09 
0.72 0.71 

0.17 0.20 

0.13 0.09 
1.00 1.00 
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also normalized is included in the Table. The atomic 
positions used are those given in the introduction of 
Part 1 with u-~.-1 

In all cases except hkl=O04, Model II provides a 
poorer fit. Note also that the structure factor fails to 
reproduce the measured intensities. In fact, Keating, 
Axe & Moss comment that no value of u causes agree- 
ment between the square of the structure factor and 
their observations. Note that both models agree rather 
poorly with the measured intensity of the very strong 
T04 reflection. 

In an attempt to refine the agreement Q(h,OH3) was 
computed for u =-]~-, called Model Ill. In all other sen- 
ses, Model Ill is identical to Model I. As was pointed 
out in Part I, such a change is easily incorporated into 
the calculation. We have that 

Q(hJl2h3)= ~ 9',,3(exp [ik. 6n3]) exp [8rcin3h3]. (30) 
n3 

Equation (30) is the analog of equations (24) and (37) 
of Part I, for an atom shift of c/12. The values of ~u, 
used to obtain Q for Model I with equation (37), Part I, 
were used for Model III with equation (30). 

Table 2 compares Model III and the structure factor 
squared for oJ with u = ~ ,  with experiment. The en- 
tries in this table are normalized as in Table 1. Model 
I11 provides much improved agreement; we take it to 
be the solution to the structure. 

Table 2. Comparison of diffuse peak intensities 
and the structure factor with experiment .for 

Model III (u= ~-~-) 

hk l  Experiment Model II1 F2/F~o3 

/01 0.12 0.10 0.13 
TO2 F - - 
T03 0" i 2 0"05 0"07 
-i-04 1 "05 0.97 1.21 
001 0.00 0.08 0"07 
002 0"62 0"66 0-53 
003 f" - - 
004 0.00 0-01 0"00 
101 F - - 
102 0.00 0-10 0"13 
103 1.00 1"00 1.00 
104 F - - 

Having chosen an appropriate Q, we may now find 
a value of r/such that I,/N, where 

I o /  N =  G ( h l h 2 , q ) Q ( h l h z h 3 ,  y ) ,  (31) 

with G given by equation (55), Appendix C, Part I, 
causes diffuse superstructure maxima whose lateral ex- 
tension agrees with experiment. This was done by com- 
paring the ratio of the peak intensity of the 002 reflec- 
tion (Fig. 1) to that at the same value of H3 but at 
hi = -½, to the corresponding ratio from the computed 
Q. It was found that the ratios are very nearly the same, 
indicating that G must be very nearly structureless, or 
from equation (55), Part I, that r/must be very nearly 
zero. A value of r/=0.055 caused best agreement. A 

contour map of ID/N computed from equation (31) for 
Model III with 7=0.24, r/=0.055 is shown in Fig. 6. 

In addition to the contour map of Fig. 1, Keating, Axe 
& Moss measured a section through the center of the 
203 diffuse maxima (not shown on the Figure) parallel 
to H3. Unlike the 103, which by our models must be its 
equivalent, it is unobscured by interference from a 
diffuse Bragg reflection from one of the other variants. 
With 1/and 7 chosen to reproduce the peak intensities 
and the 002 shift, a further test of our model is its abil- 
ity to match the shift and line contour of this reflection. 
Fig. 7 compares the measurements, made at 300 ° K, with 
a section through the 103 reflection for Model III, Fig. 6. 
In both senses the agreement is good. 

H3 

"° I %_,_1/, 

, f  

. 

1.0 2.0 3.o 
h 1 

Fig. 6. The diffuse intensity, Io /N ,  for Model 1II. 



B E R N A R D  BORIE,  S T E P H E N  L. SASS AND ALF A N D R E A S S E N  601 

We comment briefly on some aspects of the meaning 
of our result. Our original concept described in Part I, 
that nuclei of 09 associated with the three subvariants 
form at random and grow into each other, giving rise to 
interference effects which account for the diffraction 
pattern, must be incorrect. Under such circumstances 
091 should be followed by 092 or 093 with equal probabi- 
lity, upon crossing a boundary in a vertical column. 
However, as we have seen, in order to reproduce the 
experimentally observed peak-shift directions, we have 
had to require that o9~ be followed by 0)3. Other models 
with this property but incorrect in other senses also 
result in correct peak-shift directions, indicating that 
this correlation of the subvariant sequence with diffuse- 
maximum positions is a generalization. This result 
suggests that the diffraction effects are rather the result 
of growth faults, occurring as a single 09 nucleus grows. 
The faults have a specific internal structure and occur 
with a rather high frequency as indicated by the ob- 
served value of 7. 

A sense in which our model is artificially simple is 
that we have assumed that the crystal contains no un- 
transformed ft. We have presumed that the presence 
of regions of b.c.c, material should affect only the inten- 
sities of the fundamental maxima relative to the super- 
structure peaks, and not the relative details of the dif- 
fuse scattering alone. The development of a general 
diffraction theory for a partially transformed crystal 
awaits measurements of both components of the in- 
tensity distribution in absolute units. Any such theory 
must also include possible interference effects among 
the variants of the system. Such effects have been 
omitted in this treatment. 

The authors are indebted to Drs David Keating, 
John Axe, and Simon Moss for permission to use their 
results. Discussions with Keating and Moss, and with Dr 
Harry Yakel and Mr Albert Chang were stimulating 
and useful. 

APPENDIX 

The average number of atoms in o~ and defective regions 
in the hexagonal p|ane 

In order to accomodate the statistics for translations 
in the hexagonal plane to a crystal composed of arbi- 
trary relative numbers of integral cells and defective 
configurations, we took the plane to be divided into 
small regions in such a way that we could identify T 
'different' regions. We let c~ be the probability that in a 
translation of al, we crossed a boundary between two 
of the regions, the distribution of boundaries in the 
plane being random. 

Choose an atom and require that it be preceded on 
the left by a boundary. Let W(n) be the probability 
that we then translate nal to the right and encounter a 
boundary only on the last step. Then 

W(n) = (1 - a ) " - ' ~ .  

W(n) is the probability of finding a row of n atoms be- 
tween boundaries. Then the average number of atoms 
in such a row is 

oo  oo  

<n)= E nW(n)=°~E n(1-~)"-' 
n = l  n = l  

d ~' 
= e  d(1-o0 ,,=1 ~ ( 1 - ~ ) " =  1/~. 

3000 

2000 

1000 

o EXPERIMENT 
x MODEL llI 

)¢ 

x x 

XX,x  
0 I 

2'7 2'8 2"9 310 311 312 

Fig. 7. Comparison of the measured intensity along the line 
~0H3 for Zr-20 wt.% Nb quenched from 1273°K with 
Model III. The calculated points were scaled. 

Since the average number of rows in a region is 1/~ also, 
the average number of atoms in a region is 1/cx 2. 

We now set S of the T kinds of regions to be iden- 
tical and to be o91 in the sense of element 1, Fig. 3. 
Similarly S regions correspond to o92 and S to o)3, so 
that ¼(T-3S)  are to be associated with each of the 
defective configurations of Fig. 3. 

Suppose we begin with an atom in one of the S regions 
which are o91. Then of the T -  1 possible boundaries we 
may cross, S -  1 of them are fictitous, 2S of them are 
o91/o92 or o)3 boundaries, and T - 3 S  of them are ogffde- 
fect boundaries. Hence the probability that a boundary 
is real is 

J =  (2S+ T - 3 S ) / ( T -  1 )=(T -S ) / (T -  1). 

Let m be the number of atoms in a row between real 
boundaries. Then 

(m) = (n)J + 2 (n)(1 - J)J + . . .  

+ m(n)(1 _ j ) m - l j + . . .  

o r  

0o 

(m)=(n)J  ~ m ( 1 - J ) r " - l - = ( n ) / J =  1/o~(T- 1)~(T-S) 
m = l  

A C 2 9 A  - 2 
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and the average number of atoms in any of  the three 
o9 regions is 

M~= ~,_ ( T -  I ) Z / ( T - S y  . (32) 

If we begin with an atom in one of the ¼(T-3S)  de- 
fective configurations, of the T -  1 possible boundaries 
there are - tg(T-3S)-  1 fictitous boundaries, 3 ( T - 3 S ) / 4  
defect/defect boundaries, and 3S defect/o9 boundaries. 
Hence the probability that a boundary is real is 

[3 (T-3S) /4+ 3S] / (T-1)  = ¼(T+ S ) / ( T -  1) 

and the average number of atoms in any of the four 
defective regions is 

16 
Mo= 9c~2 ( T -  I)2/(T+ S) 2 • (33) 

Equations (32) and (33) relate M,o and Mn to u, T, 
and S, quantities which are essentially fictitous and not 
observable. We prefer to express them in terms Gf the 
experimentally measurable r/ and y. With the aid of 
equations (3) and (25) we find that 

M,,=¼(2y + 3)2/[(y+ I)2(1 - r/)2], (34) 
and 

Mo=~(ZT+3)2/[(y+Z)Z(1-rl)Z]. (35) 

A complete statistical description of the structure 
of the hexagonal plar'.e should include not only the 
average sizes of the various regions, but as well the 
relative numbers of regions to be found in the plane. 
Consider a plane containing M atoms. Let there be V 
regions which are o91. If we choose an atom at random, 
the probability that it is in an o91 region is 

VM,o S 
M - T  - I / ( 2 y + 3 )  

by equation (3). So with equation (34), the number of 
o9~ regions per atom in the plane is 

V 4(y + 1)z(1 - q)z 
M = (27+3) 3.. (36) 

Let there be W regions associated with one of the four 
possible defective configurations of Fig. 3 in the plane 
of M atoms. Then 

M = 3 VM~ + 4 WMo 

and from equations (34), (35), and (36) the number o f  
defective regions of a particular type per atom in the 
plane is 

W Q y(y+2)2(1-r/)  z 
M = ~  (2~,+ 3)3 (37) 

This means that though the average size of a defect 
region in the plane is a relatively insensitive function of 
y [equation (35)], their number density in the plane de- 
creases rapidly as y becomes small. 

With the values of y = 0.24 and r/= 0.055 found from 
the measurements, from equations (34) and (36), for 
any one of the three kinds of co regions, there are on the 
average 2.20 atoms per region and 0.130 regions per 
atom in the plane. From equations (35) and (37), for one 
of the four kinds of defect regions, there are 1.20 atoms 
per region and 0.029 regions per atom in the plane. The 
hexagonal planes are very imperfect. 
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On the Dependence of X-ray Debye-Waller Parameters on Atomic Form Factors 
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An analysis of powdered-diamond diffraction data with Hartree-Fock and standard molecular C 
atomic form factors yields the Debye-Waller parameters 0-20_+0.01 and 0.172_+0.009 ,~2 respectively. 
The lattice-dynamic value, which is calculated here from published phonon dispersion curves measured 
by inelastic neutron scattering, is 0.149-0.150 A2 at 298°K. It is shown that a small amount of an 
orbital product, .SCF .SXO in the core atomic scattering factor can dramatically alter the Debye-Waller • ( I s  Z 2 s  , 

parameter. For diamond, this latter scattering factor gives a value of 0.134+ 0.009 A 2. 

The determination of an accurate Debye-Waller factor 
for simple monatomic crystals by absolute X-ray dif- 
fraction intensities is generally limited by the model for 

* Alfred P. Sloan Fellow. Present address: Department of 
Chemistry, Carnegie-Mellon University, 4400 Fifth Avenue, 
Pittsburgh, Pennsylvania 15213, U.S.A. 

crystal diffraction. In particular, thermal diffuse scat- 
tering and extinction phenomena make it difficult to 
infer true Bragg structure factors from a set of ac- 
curately measured intensities of X-ray scattering. Even 
if these difficulties can be successfully overcome, the 
analysis for the Debye-Waller factor at a single tem- 


